light OJ 1006 problem: 1006 - Hex-a-bonacci
Time Limit: 0.5 second(s) | Memory Limit: 32 MB |
Given a code (not optimized), and necessary inputs, you have to find the output of the code for the inputs. The code is as follows:
int a, b, c, d, e, f;
int fn( int n ) {
if( n == 0 ) return a;
if( n == 1 ) return b;
if( n == 2 ) return c;
if( n == 3 ) return d;
if( n == 4 ) return e;
if( n == 5 ) return f;
return( fn(n-1) + fn(n-2) + fn(n-3) + fn(n-4) + fn(n-5) + fn(n-6) );
}
int main() {
int n, caseno = 0, cases;
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d %d %d %d %d", &a, &b, &c, &d, &e, &f, &n);
printf("Case %d: %d\n", ++caseno, fn(n) % 10000007);
}
return 0;
}
int fn( int n ) {
if( n == 0 ) return a;
if( n == 1 ) return b;
if( n == 2 ) return c;
if( n == 3 ) return d;
if( n == 4 ) return e;
if( n == 5 ) return f;
return( fn(n-1) + fn(n-2) + fn(n-3) + fn(n-4) + fn(n-5) + fn(n-6) );
}
int main() {
int n, caseno = 0, cases;
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d %d %d %d %d", &a, &b, &c, &d, &e, &f, &n);
printf("Case %d: %d\n", ++caseno, fn(n) % 10000007);
}
return 0;
}
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case contains seven integers, a, b, c, d, e, f and n. All integers will be non-negative and 0 ≤ n ≤ 10000 and the each of the others will be fit into a 32-bit integer.
Output
For each case, print the output of the given code. The given code may have integer overflow problem in the compiler, so be careful.
Sample Input | Output for Sample Input |
5
0 1 2 3 4 5 20
3 2 1 5 0 1 9
4 12 9 4 5 6 15
9 8 7 6 5 4 3
3 4 3 2 54 5 4
|
Case 1: 216339
Case 2: 79
Case 3: 16636
Case 4: 6
Case 5: 54
|
my solution in c++ to light OJ 1006 Hex-a-bonacci problem link: http://ideone.com/pYjAzX
my solution in c++ to light OJ 1006 Hex-a-bonacci problem:
#include <iostream>
#include <cstring>
#include <cstdio>
#define maxn 10003
using namespace std;
long long fn[maxn];
int main() {
// your code goes here
int n, cases, caseno=0, i;
cin >> cases;
while (cases--) {
fn[6]=0;
for (i=0;i<6;i++) {
scanf("%lld",&fn[i]); fn[i]=fn[i]%10000007;
fn[6]=(fn[6]+fn[i])%10000007;
}
cin >> n;
for (i=7;i<=n;i++) {
fn[i]=(fn[i-6]+fn[i-5]+fn[i-4]+fn[i-3]+fn[i-2]+fn[i-1])%10000007;
}
cout<<"Case "<<++caseno<<": "<<fn[n]<<endl;
}
return 0;
}
and here is my friend Quan's solution in c: http://ideone.com/HQvLu3
#include <cstdio>
#include <cstring>
#define maxn 10003
using namespace std;
long long fn[maxn];
int main() {
int n, caseno = 0, cases,i;
scanf("%d", &cases);
while( cases-- ) {
fn[6]=0;
for (i=0;i<6;i++){
scanf("%lld",&fn[i]); fn[i] = fn[i] % 10000007;
fn[6]=(fn[6]+fn[i]) % 10000007;
}
scanf("%d",&n);
for (i=7;i<=n;i++) fn[i]=(fn[i-1]+fn[i-2]+fn[i-3]+fn[i-4]+fn[i-5]+fn[i-6])% 10000007;
//fn[i]=((2*fn[i-1]*10000007)-fn[i-7]) % 10000007;
printf("Case %d: %lld\n", ++caseno, fn[n] );
}
return 0;
}
No comments:
Post a Comment